Characterization of CdSe nanocrystals coated with amphiphiles. A capillary electrophoresis study

نویسندگان

  • Sławomir Oszwałdowski
  • Katarzyna Zawistowska-Gibuła
  • Kenneth P. Roberts
چکیده

We have synthesized CdSe nanocrystals (NCs) possessing a trioctylphosphine surface passivation layer and modified with amphiphilic molecules to form a surface bilayer. The NCs covered with single amphiphiles are not stable in aqueous solution, but a mixed amphiphilic system is shown to provide stability in solution over several months. The solutions of the modified NCs were characterized by UV-Vis absorbance, photoluminescence, and transmission electron microscopy. An electrophoretic study revealed two operational modes. The first relies on the enrichment of NCs using a micellar plug as a tool. The accumulation of NCs at the plug-electrolyte buffer interface results in a sharp peak. By controlling the electrophoretic conditions, nanocrystals were forced to exit a micellar plug into an electrolyte buffer. We conclude that a system consisting of modified nanocrystals and a micellar plug can act as a mixed pseudomicellar system, where modified nanocrystals play the role of pseudomicelles.FigureElectrophoretic focusing of amphiphile coated CdSe nanocrystals using a micellar plug. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-011-0727-8) contains supplementary material, which is available to authorized users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of CdSe Nanocrystals and their Interaction with Micellar Aggregates by Means of Capillary Electrophoretic Techniques

Stable water soluble surfactant coated CdSe nanocrystals with trioctylphosphine (TOP) were obtained by a process of dynamic surface coating with cationic, anionic, and non-ionic surfactants. The surfactant-coated CdSe/TOP nanocrystals were characterized by complementary techniques of UV-VIS and photo-luminescence spectrophotometry, as well as by means of a capillary zone electrophoretic techniq...

متن کامل

Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots†

We describe the synthesis of water-soluble semiconductor nanoparticles and discuss and characterize their properties. Hydrophobic CdSe/ZnS core/shell nanocrystals with a core size between 2 and 5 nm are embedded in a siloxane shell and functionalized with thiol and/or amine groups. Structural characterization by AFM indicates that the siloxane shell is 1-5 nm thick, yielding final particle size...

متن کامل

Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.

Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-neck...

متن کامل

High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets.

The high-temperature synthesis of CdSe nanocrystals in nanoliter-volume droplets flowing in a perfluorinated carrier fluid through a microfabricated reactor is presented. A flow-focusing nanojet structure with a step increase in channel height reproducibly generated octadecene droplets in Fomblin Y 06/6 perfluorinated polyether at capillary numbers up to 0.81 and with a droplet:carrier fluid vi...

متن کامل

Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides.

Synthetic phytochelatin-related peptides are used as an organic coat on the surface of colloidal CdSe/ZnS semiconductor nanocrystals synthesized from hydrophobic coordinating trioctyl phosphine oxide (TOPO) solvents. The peptides are designed to bind to the nanocrystals via a C-terminal adhesive domain. This adhesive domain, composed of multiple repeats of cysteines pairs flanked by hydrophobic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2012